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ABSTRACT !

The resistivity and Hall coefficient of gated n-InAs epilayers
have been measured at low temperatures utilizing differential
techniques and a magnetic field swept from zero to six tesla.

When the InAs surface is in accumulation, three distinct series
of oscillations, periodic in inverse magnetic field, are observed.
These series are interpreted as the quantization of the surface
electron energies into three subbands. The densities of these
subbands are roughly linear in applied gate voltage and vanish

as one approaches flatband. The temperature and magnetic field

dependences of the oscillation amplitudes suggests an effective

mass of .04 m, and a Dingle temperature of 26K.
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2.

Introduction

Most surface quantization studies to date have been undertaken on inversion
layersl in which case the surface transport can be isolated from that in the
bulk. Accumulation layer transport studies have been less common. Tsulz'3
however, has demonstrated the existence of surface quantization and characterized
the behavior of the electronic energy levels in InAs surface accumulation
layers using capacitance measurements and tunneling through a native oxide. At
least qualiiative agreement with several of the theoretical predictions of
Baraff and Appelbauma was found. Surface quantization in n-channel InAs
inversion layers has been studied by Kawaji and I(awaguchiS who found an in-
crease in mobility with carrier density, consistent with coulomb
scattering in the quantized surface channel.

In this paper, we report on electrical transport measurements made on
accumulation layers formed on the surface of InAs epitaxial films. To
distinguish the surface contribution to the transport coefficients an MOS
structure was employed and an excitation voltage was added to the dc gate
voltage. The resulting differential signal was measured for both conductivity
and Hall configurations as functions of gate voltage, magnetic field, and
temperature. Three series of oscillations are observed and an analysis
in terms of surface quantization in the accumulation layer yields informa-
tion on the carrier effective mass and scattering lifetime which is com-

pared to the bulk and surface parameters observed by others.

Experimental

The films of n-type InAs grown heteroepitaxially on GaAs have been described

previously.6 They are approximately 15 um thick. Electrical measurements at




77K have found a bulk carrier density of about 2 x lOlscm-3. mobility of
about 1.2 x 105cm2/V-s, and a front surface which is strongly avcumuluwd.7

A 1500 A insulating S10, layer covers the sample arca and an aluminum gate

2

completes the structure as shown in Figure 1. The flatband condition for

Fig. 1. Schematic of the sample and the measurement circuitry.
The cross-hatched area on the sample represents the gate
coverage.
this device occurs for applied electric fields near the break-down field

of the insulator, thus precluding study of inversion layers. Two samples

of this type have been measured. The one which yielded most of the data

presented here has flatband condition occurring at VFB = =33 V. This value

comes from capacitance versus voltage curves which are essentially temperature

independent from 4 K to 77 K. The total Hall coefficient for these films




3.

decreasea8 from 77 to 4 K, explained by our multi-layer annlysls?ns re-

sulting from a decrease in bulk mobility, The bulk carrier concentra-

tion is, in fact, essentially constant between 77 and 4 K indicating

the absence of freeze-out effects. Most measurements were made at 4 K with
the sample immersed in liquid helium. The temperature was lowered by pumping
on the helium and raised by heating the sample mount.

A constant current of 1.0 ma was passed through the InAs film and the
voltage across the clover-leaf sample depicted in Figure 1 was measured in
both the conductivity (Vo) and Hall (Vh) configurations. These dc voltages
exhibit oscillatory behavior as functions of gate voltage and magnetic field,
but the amplitude is too small for reliable analysis. At T = &4 K and B=6T,
for example, the oscillations were a maximum of 1% of the total and less than
10% of the change of the dc voltage from flat band to strong accumulation. Thus,
a differential technique was utilized in which a 1 kHz signal of 0.1 or 0.2 V
rms was added to the dc gate voltage. The sample voltage was fed into an
Ithaco Dynatrac III lock-in amplifier using the vector sum mode resulting in
the measured quantities Idvo/dvsl and Idvh/dvgl (hereafter referred to
as dVo and dvh) as indicated in Figure 1. Lowering the ac frequency to as low

as 20 Hz yielded no change in the experimental curves.

Results

Several curves of dVo and dV, versus V8 were made using magnetic fields

h
from 0.5 to 6 T. Two such curves for dVo at 4 K and 85 K are shown in Fig. 2b,
which clearly indicates the low temperature nature of the oscillatory behavior.

Curves similar to the 4 K one are reported by Wagner, et 31.9 The gate

voltage dependence of the oscillations in Fig. 2b shows an onset on the




FB' VFB = =33 V was obtained from

accumulation side of the flat band voltage V

10

an analysis™ of the capacitance-voltage plot shown in Fig. 2a. The large

long period peak seen in dvo at 85 K is expected from conductivity -eanure-entab‘7
& and is due to the decrease of mobility with increasing surface potential. The

small peak near V_  is more pronounced at 4 K and is similarly found in dvh.

FB
Similar structure is seen in silicon MOS devices with field-effect mobility
neasurelentall and is probably related to interface states. The temperature

dependence of the oscillation amplitudes for both dvo and th is shown in

: Fig. 3, and will be discussed in the fcllowing section.
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Fig. 2 (a) The capacitance-voltage plot taken at 77 K and B = 0.
Flatband condition occurs at -33.3V. (b) Examples of
: dav
qy_ versus V8 experimental plots. Both curves are for
8
B=6T, the bottom one being taken at 85 K and the top
one at 4 K.
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OSCILLAT/ON AMPLITUDE

Fig. 3. Oscillation amplitudes versus temperature. The circles are

dv dv
obtained from v and the crosses from gy versus V plots
7

at B = 6 T. The curves are calculated from Eqn (2) with the
indicated values of effective mass. The data and curves are

normalized to unity at T = 0.

Typical plots of dvo as a function of magnetic field are shown in
Fig. 4. For V8 > VFB the plots consist of series of peaks which are periodic
in 1/B. The identification of peaks corresponding to Landau levels of
different subbands (see below) are indicated in the figure. Over the
voltage range measured, three subbands are observed. The peaks at the higher

fields and designated by (o) are assigned to the ground state subband Landau

ak




levels and peaks assigned to the first (x) and second (4) excited subbands

are observed at correspondingly lower magnetic fields. This identification

of peaks is aided by the construction of a graph similar to that used by

othera.lz The peak positions obtained from dVo or dvh versus V8 plots are

V,
s

av. (arbitrary units)

d

— 4
B, (tesla)

dav
Fig. 4. EVE versus magnetic field at 4 K for various gate voltages.

Vg = -35 V corresponds to near flatband. The peaks corres-
ponding to the three subbands are identified by o-ground

state subband, x-first excited subband, A-second excited
subband.

put on a B versus V8 graph. Landau levels of different subbands are then
seen to form well defined series of lines and by locating peaks in plots
such as those shown in Figs. 4 and 5 on this graph, the particular subband

can be identified. Since oscillations from different subbands have different




ggL(ubitrcry units)

2
A . 1 s :
B, (tesla)
dVh
Fig. 5. qv_ versus magnetic field for V8 = +20 V. Peaks are labeled
4

as in Fig. 4.

periods in 1/B and in V8 the superposition of Landau peaks from different
subbands can also be distinguished. Perhaps the clearest indication of the
three subbands is seen in Fig. 5 which shows the magnetic field dependence of
th for V8 = 420 V. This figure distinctly illustrates all three sets of
oscillations with regions of overlap between the ground and first excited
subbands occurring near 4 T and between the first and second excited subbands
occurring near 1 T.

The second sample studied had a gate which covered less of the total

surface area. It produced much the same structure in dv0 as the sample




here reported, but only two subbands were clearly distinguished and their
densities at V8 = 0 were about 30% lower than those of the ground and first
excited subband densities in the present sample. That sample did, however
have clear indications of spin splitting beginning in the n = 0, 1, 2 Landau

levels of the ground state subband at 5 T.

9

The principle difference between our results and those of Wagner et al.
is the absence in our data of a region between the ground levels and first
excited levcls where the oscillations disappeared. We also did not observe
a measurable decrease in VPB between 77 and 4 K. Comparison of different

samples is difficult, however, because of the likelihood of variation in

surface states and oxide charge.

Discussion

Since the InAs surface is strongly affected by surface states and trapped
1
charge in the oxide 3, extraction of the subband energies and densities as a func-

tion of surface potential“'la would be somewhat speculative. The densities of carrie:

for each subband, however, can be obtained at a given gate voltage by
using the theory of de Haas-van Alfen type phenomenon which results in the
relationzz

. 4.84 x 10** -2

£ T we (/B T e /s " (1)

where Pi(llB) is the period of oscillation in 1/B (in units of T-l) for

a subband i, and N is the density of carriers per unit area. These

i
densities have been calculated for the three subbands from plots like those
in Figs. 4 and 5 and are plotted in Fig. 6 using averages of the dVh and dVo

plots. The dependence of density on gate voltage is linear to within the
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Fig. 6. Subband densities versus gate voltage at 4 K. The symbols
identifying subbands are those used in Fig. 4.

experimental accuracy and the gate voltage intercepts corresponding to zero
density are -32 + 2 V, -29 + 3 and -15 + 8 V for the ground, first and second
excited subbands, respectively.

The temperature dependence of oscillation amplitudes in magnetoresistance
can be used to determine the effective mass.15 Superimposed on our experimental
results in Fig. 3 are the theoretical curves for different effective masses.

The temperature dependence factor15 should be

Ampl. —————Jlji-—‘ (2)
sink 21 kT
o huz




*
where o - eB/m 1is the cyclotron frequency for electrons in the plane of

the film. The oscillations analyzed for Fig. 3 resulted from the ground
state subband at 6 T. All the curves were normalized to the same value
at T = 0. It is seen that the effective mass (“0.04 me) is greater than
the bulk value16 of .024 m. Using the temperature dependence of magneto-
resistance quantum oscillations, Sladekl7 found an apparent increase of
effective mass for bulk InAs with increasing magnetic field with m* = ,035 L
at 2.6 T, somewhat larger than predicted.2 Tsu12 found a cyclotron effective
mass in surface layers of InAs from tunneling measurements which was about
10% larger than predicted for bulk InAs. He found masses in the range .025
to .032 m, at 6 T for the Landau levels n = 0 to 2 of the ground state sub-
band.

The onset of oscillations occurred at different magnetic fields for
each of the three subbands. At comparable subband densities the first and
second excited subbands required nearly equal fields to be observed, but
the ground state subband required fields about two times larger. The con-
dition for oscillations to be observed is wcT > 1, where wc = eB/m* and T
is the carrier scattering time in the surface layer. Assuming comparable
effective masses for each of the subbands, this indicates scattering times
are smaller for the ground state subband than for the excited levels. This

is probably due to the ground state carriers being held closer to the surface.
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The magnetic field dependence of the oscillation amplitudes can be used
to determine the Dingle tempetatute.ls Due to the superposition of peaks
from different subbands an accurate determination of the amplitudes is
difficult. However, for the ground state subband at Vs =0and T = 4 K

&l

the amplitudes did follow the expected B exp (2n2kT'/hwc) dependence and,

assuming m* = 0.04 me. a Dingle temperature of T'= 26 K was determined.

This compares to T' = 16.9 K found for bulk InAs at 4.2 K.17 The larger
Dingle temperature indicates a shorter scattering lifetime which is as ex-
pected for the surface layer. It is interesting to note that if this lifetime
is associated with the momentum relaxation time involved in the surface
mobility, a value of u = 4 x 103cm2/V-sec is calculated which agrees fairly
well with y = 7 x 103cm2/V-sec fOund7 at 77 K on a similar sample and thought

to be nearly temperature independent.8

Conclusions

Oscillations in the conductivity and Hall voltages have been identified
with carrier energy quantization in the surface accumulation layer of InAs.
The three subbands observed have densities at Vg =0and T = 4 K of 9.5,
2.5,and 0.5 x 1011cm-2 which agree reasonably well with those found by Wagner,
gglgl.g on similar samples. The temperature dependence of oscillations due
to the ground level indicates an effective mass of about .04 L and the

magnetic field dependence of the amplitudes indicates a Dingle temperature

of 26 K.
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